Divalent Ions and the Surface Potential of Charged Phospholipid Membranes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divalent Ions and the Surface Potential of Charged Phospholipid Membranes

Phospholipid bilayer membranes were bathed in a decimolar solution of monovalent ions, and the conductance produced by neutral carriers of these monovalent cations and anions was used to assess the electric potential at the surface of the membrane. When the bilayers were formed from a neutral lipid, phosphatidylethanolamine, the addition of alkaline earth cations produced no detectable surface ...

متن کامل

Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers.

The Hofmeister series illustrates how salts produce a wide range of effects in biological systems, which are not exclusively explained by ion charge. In lipid membranes, charged ions have been shown to bind to lipids and either hydrate or dehydrate lipid head groups, and also to swell the water layer in multi-lamellar systems. Typically, Hofmeister phenomena are explained by the interaction of ...

متن کامل

Bridging like-charged macroions through long divalent rodlike ions.

Like-charged macroions in aqueous electrolyte solution can attract each other because of the presence of inter- and/or intramolecular correlations. Poisson-Boltzmann theory is able to predict attractive interactions if the spatially extended structure (which reflects the presence of intramolecular correlations) of the mobile ions in the electrolyte is accounted for. We demonstrate this for the ...

متن کامل

Nanoparticle-induced surface reconstruction of phospholipid membranes.

The nonspecific adsorption of charged nanoparticles onto single-component phospholipid bilayers bearing phosphocholine headgroups is shown, from fluorescence and calorimetry experiments, to cause surface reconstruction at the points where nanoparticles adsorb. Nanoparticles of negative charge induce local gelation in otherwise fluid bilayers; nanoparticles of positive charge induce otherwise ge...

متن کامل

Increased Binding of Calcium Ions at Positively Curved Phospholipid Membranes.

Calcium ion is the ubiquitous messenger in cells and plays a key role in neuronal signaling and fusion of synaptic vesicles. These vesicles are typically ∼20-50 nm in diameter, and thus their interaction with calcium ions cannot be modeled faithfully with a conventional flat membrane bilayer setup. Within our newly developed molecular dynamics simulations setup, we characterize here interaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of General Physiology

سال: 1971

ISSN: 1540-7748,0022-1295

DOI: 10.1085/jgp.58.6.667